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ercury (CAS 7439-97-6, atomic mass. 200.6) is 
one of the most toxic metals found in the 
environment. It belongs to group IIb of the 
periodic table of elements and is called 

quicksilver because it is a silver-white liquid at room 
temperature. Mercury exists in three valence states (0, I 
and II). Elemental mercury (Hg0) is chemically different 
from the other two members of group IIb metals, 
cadmium and zinc. Elemental Hg has a very low melting 
point (-39oC) compared with cadmium (321oC) and zinc 
(420oC).  Hg0 is quite volatile (vapour pressure 0.16 Pa at 
20 oC) and is not readily soluble in water, though natural 
waters tend to be supersaturated with Hg0 compared to 
air, resulting in its volatisation (Morel et al. 1998). Its 
high surface tension and uniform volume of expansion 
make mercury ideal for use in thermometers, barometers 
and other measuring devices (Smith and Rowan-West 
1996).  
 
In water, the mercurous state [Hg(I)] of mercury exists as a 
doubly-charged binuclear ion (dimer), Hg2

2+.  Hg(I) 
combines most commonly with inorganic molecules 
(Weber 1993). The chemical compounds of the mercuric 
ion [Hg(II)] are highly stable and much more numerous 
than those of Hg(I) (OECD 1994). The mercuric cation, 
Hg2+, forms a relatively weak bond with chloride compared 
to bonds formed with other inorganic anions, although 
mercuric chloride (HgCl2) may dominate when chloride 
salts are abundant (Alberta Environmental Protection 
1992). HgCl2 is more likely to be associated with 
sediments, with log Ksed values of 3.4-4.1 reported (Hurley 
et al. 1994). Hydroxyl anion (log K1=10.6) has a higher 
affinity for Hg in the absence of organic complexing agents 
and will dominate in most freshwaters unless the pH is low, 
or chloride is high.  Under reducing conditions, Hg2+ 
preferentially forms stable, largely covalent bonds with 
sulphide (including thiols) and selenides whenever these 
ligands are present (Jackson 1998).  
 
Mercuric forms of Hg can be transformed through abiotic 
and biotic processes to form alkylmercury compounds such 
as monomethylmercury [CH3Hg+], dimethylmercury 
[(CH3)2Hg], and aryl compounds [e.g., phenyl-mercury] 
(Alberta Environmental Protection 1992).  
Monomethylmercury is commonly referred to as 
methylmercury and abbreviated as MeHg.  It is very toxic 
and accumulates readily in aquatic biota (Beckvar et al. 

1996; World Health Organization 1989). The 
dimethylmercuric form is volatile. Total mercury refers to 
the total concentration of all mercury species (i.e., both 
inorganic and organic forms). 
 
Mercury occurs naturally, but significant amounts enter 
ecosystems through anthropogenic emissions, re-
emissions and discharges. Natural sources of mercury 
include geological mercury deposits, rock weathering, 
forest fires and other wood burning, faults/volcanoes 
(land-based and oceanic), hotsprings, and a portion of the 
volatilisation from the oceans. The primary anthropogenic 
sources of Hg in Canada include: metal smelting; coal-
burning power plants; municipal waste incineration; 
sewage and hospital waste incineration; coal and other 
fossil fuel combustion; cement manufacturing; and, 
mercury waste in landfills or storage (Pilgrim and 
Ecological Monitoring and Assessment Network 1998). 
 
Mercury is used in dental amalgams, exterior paints, 
thermometers, barometers, and electrical products such as 
dry-cell batteries, fluorescent lights, switches, and other 
control equipment. It is used also in the electrolytic 
preparation of chlorine and caustic soda (chlor-alkali 
industry) and is an important chemical utilised globally 
by the gold mining industry to separate gold from other 
minerals into a gold-mercury amalgam. Mercury was 
used formerly as a seed and turf fungicide (Alberta 
Environmental Protection 1992). 
 
Typically, MeHg represents less than 10% of the total Hg 
in surface waters, but can exceed 30% in perturbed 
systems such as newly formed reservoirs. In natural 
surface waters (freshwater and marine), concentrations of 

M 

Table 1. Water quality guidelines for mercury for the protection 
of aquatic life (Environment Canada 2003)*. 
Aquatic life Guideline value (ng·L-1)
Freshwater 
 Inorganic Mercury 
 Methylmercury 

 
26 
4† 

Marine 
 Inorganic Mercury 
 Methylmercury 

 
16† 

NRG‡ 
*May not protect wildlife that consume aquatic life; see text for details. 
†Interim guideline. May not protect fully high trophic level fish. 
‡No recommended guideline. 
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total mercury range from <1 to 20 ng·L-1 while 
concentrations of MeHg are usually less than 1 ng·L-1, 
though concentrations up to 4.1 ng·L-1 have been reported 
in the Gatineau River (Fisher et al. 1984; Kelly et al. 
1997; Mierle 1990; Mierle and Ingram 1991; Schintu et 
al. 1989). Water draining from wetland areas tend to have 
higher concentrations of MeHg (mean of 0.626 ng·L-1) 
than water from watersheds lacking wetlands (mean of 
0.03 ng·L-1) (Kelly et al. 1995; St. Louis et al. 1994). 
Mean MeHg concentrations increased from less than 0.1 
to greater than 1 ng·L-1 following the creation of an 
experimental reservoir; total mercury levels remained 
relatively constant at 2.5-3.0 ng·L-1 (Kelly et al. 1997; 
Paterson et al. 1998). Concentrations of total mercury and 
methylmercury in the ranges of those found in natural 
surface waters have been measured in rain and snow 
samples as well.  
 
The net production of methylmercury in aquatic 
environments is a balance between methylation and 
demethylation; both may occur through abiotic and biotic 
(microbial) processes. Several factors influence the rate of 
net MeHg production including: the concentration and 
availability of Hg2+; composition of the microbial 
population; nutrient and mineral substrate; pH; 
temperature; redox potential; dissolved and particulate 
organic matter (DOC and POM); salinity; iron; and 
sulphate. Bacterial activity increases with increasing 
temperature and available biodegradable organic carbon. 
Thus, methylation rates tend to be highest in surface 
sediments with freshly deposited organic matter, and in 
warm shallow sediments where abundant bacterial 
activity takes place (Ramlal et al. 1986; Winfrey and 
Rudd 1990). Often, newly created reservoirs increase 
temporarily the amount of methylmercury in aquatic 
systems, including food chains, due to the accelerated 
microbial methylation of existing inorganic Hg forms 
caused by decomposing flooded vegetation (Abernathy 
and Cumbie 1977; Schetagne et al. 1999). 
 
Methylmercury is of special concern not only because of 
its toxicity, but also because of its tendency to biomagnify 
in upper trophic levels of aquatic food webs. Mercury 
compounds bind strongly with sulphydryl groups in 
proteins. MeHg passes easily through the digestive wall 
and bioconcentrates in tissues, whereas inorganic Hg is 
more likely to be excreted (Boudou and Ribeyre 1985). 
Organisms at lower trophic levels usually contain the 
lowest proportion of total mercury as MeHg and uptake is 
primarily a passive process occurring by adsorption to or 
absorption within the cell (Beckvar et al. 1996). Aquatic 
plants contain a low percentage of MeHg, typically less 
than 50% of total Hg. Invertebrates often contain about 
50% MeHg and 50% inorganic mercury (Hildebrand et al. 

1980). Diet is the most important route of uptake of 
MeHg for organisms higher in the food chain, like 
piscivorous fish (e.g., walleye, lake trout), aquatic birds 
(loons, herons), piscivorous mammals (mink, otters), and 
marine mammals.  These animals contain a very high 
proportion of total Hg as MeHg in muscle tissue (90 – 
100%).  
 
Numerous chemical and physical variables of surface 
waters determine the potential for mercury to 
bioaccumulate in fish (Environment Canada 2002). In 
particular, low pH (<6), low alkalinity (acid-neutralizing 
capacity 50 µeq·L-1 or less), and low calcium (<5 mg·L-1) 
lakes are associated with elevated mercury concentrations 
in fish (Grieb et al. 1990; Spry and Wiener 1991). 
 
 
Water Quality Guideline Derivation 
 
The Canadian water quality guidelines (WQGs) for 
inorganic mercury and methylmercury for the protection 
of aquatic life were developed based on the CCME 
protocol (CCME 1991). Insufficient data exist to derive a 
marine water quality guideline for methylmercury.  
 
The protocol does not address exposure through food or 
bioaccumulation to higher trophic levels. As such, aquatic 
life that are exposed to methylmercury primarily through 
food (e.g., piscivorous fish) may not be adequately 
protected. Moreover, these WQGs for mercury may not 
prevent the accumulation of methylmercury in aquatic 
life; therefore, through this process the tissue residue 
guideline (TRG; 33 µg MeHg·kg-1 ww) for the 
protection of wildlife that consume aquatic life may be 
exceeded (Environment Canada 2002). Thus, if the 
ultimate management objective for mercury is to protect 
high trophic level aquatic life and/or those wildlife that prey 
on aquatic life, more stringent site-specific application of 
these water quality guidelines may be necessary (see 
Additional Considerations). Use and derivation of site- and 
species-specific water quality objectives is provided by 
Environment Canada (Environment Canada 2003). 
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Freshwater Life 
 
Inorganic Mercury 
In fresh waters, acute (24- to 96-h LC50) toxicity 
concentrations for inorganic Hg range from 5 to 
5600 µg Hg·L-1 in invertebrates and from 150 to 
900 µg Hg·L-1 in fish (Biesinger and Christensen 1972; Call 
et al. 1983; Rehwoldt et al. 1973; Wobeser 1975). From 
limited acute data, algae appear sensitive with 24-h LC50s 
from 9 to 27 µg Hg·L-1 for inorganic Hg (Chen and Lin 
1997). 
 
In chronic tests (7- to 21-d), invertebrates are about as 
sensitive to mercury as fish. Effect concentrations (EC50s) 
in invertebrates range from 1.28 to 12.0 µg Hg·L-1 for 
inorganic Hg (Biesinger et al. 1982; Spehar and Fiandt 
1986). In fish, chronic values for inorganic Hg range from 
0.26 to >64 µg Hg·L-1 in 5- to 60-d tests (Niimi and 
Kissoon 1994; Snarski and Olson 1982). Amphibians are 
sensitive also to inorganic Hg with 5- to 21-day LC50s 
ranging from 1.3 to 67.2 µg Hg·L-1 (Birge et al. 1979). 
Adverse effects reported commonly among all studies 
include growth, impaired reproduction and development, 
and death.  
 
 
 

The guideline value recommended for inorganic Hg is 
based on the most sensitive LOAEL of 0.26 µg Hg·L-1 for 
juvenile fathead minnows (Pimephales promelas) reported 
by Snarski and Olson (1982). In 60-d flow-through 

experiments, the authors observed reduced growth 
(weight) of exposed offspring from exposed parents, and 
reproductive impairment evidenced as reduced spawning 
and egg production.  
 
The LOAEL was divided by a safety factor of 10 to give 
a Canadian water quality guideline of 0.026 µg Hg·L-1 or 
26 ng Hg·L-1. 
 
 
Methylmercury 
Acute toxicity (24- to 96-h) concentrations for MeHg range 
from 24 to 125 µg Hg·L-1 in fish and from 3.5 to 
6.3 µg Hg·L-1 in algae (no invertebrate data available) 
(Thomas and Montes 1978; Wobeser 1975). In chronic 
tests, EC50s range from 0.04 to 1.14 µg Hg·L-1 for 
invertebrates and from 0.93 to 63 µg Hg·L-1 in fish 
(Biesinger et al. 1982; McKim et al. 1976; Spehar and 
Fiandt 1986). In side-by-side tests, MeHgCl is typically 

more than ten times as toxic as HgCl2 to fish, invertebrates, 
and aquatic plants (Biesinger et al. 1982; Niimi and 
Kissoon 1994; Thomas and Montes 1978). 
 
An interim guideline was recommended for MeHg based 
on a combination of a high quality study that reported 
reproductive effects on Daphnia magna, and several 
research papers comparing the toxicity of inorganic Hg 
relative to MeHg. A range of measured concentrations 
from 0.04 to 0.26 µg Hg·L-1 (as MeHg) in flow-through 
experiments caused a significant decrease in D. magna 
production of young (Biesinger et al. 1982).  
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Figure 2. Select freshwater toxicity data for 
 methylmercury. 
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Figure 1. Select freshwater toxicity data for inorganic 
mercury 
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The LOAEL of 0.04 µg Hg·L-1 was divided by a safety 
factor of 10 to derive an interim Canadian water quality 
guideline of 0.004 µg L-1 or 4 ng·L-1. This guideline is 
recommended for the protection of low trophic level 
freshwater life (i.e., generally trophic levels 1-2) against 
the adverse affects of direct exposure to methylmercury 
through water. This guideline may not protect high 
trophic level aquatic life (i.e., generally trophic levels 3 
and 4) which are exposed to methylmercury primarily 
through food. Nor may it prevent the accumulation of 
methylmercury in aquatic life which could cause the 
tissue residue guideline (33 µg·kg-1 diet ww) for the 
protection of wildlife consumers of aquatic biota to be 
exceeded (Environment Canada 2002). 
 
Marine Life 
 
 
Inorganic Mercury 
Data for marine waters are much more limited but trends 
are similar to those observed for fresh waters. A single 
acute (96-h) study on the effects of inorganic Hg on fish 

reported a LC50 of 68 µg Hg·L-1 (Sharp and Neff 1982). For 
invertebrates, 24- to 96-h LC50 range from 3.5 to 
161 µg Hg·L-1 (Lussier et al. 1985; Nelson et al. 1988).  
 
Similar to freshwater studies, chronic studies on marine life 

report reduced growth and survival, and impaired 
development (e.g., increased incidence of deformities). 
EC50s for inorganic Hg range from <5 to 55 µg Hg·L-1 for 
fish, from 1.2 to 20 µg Hg·L-1 for invertebrates, and from 
0.16 to 1002 µg Hg·L-1 for plants and algae (Brown and 
Parsons 1978; Fisher et al. 1984; Lussier et al. 1985; Sharp 
and Neff 1982; Warnau et al. 1996).  
 
The LOAEL of 0.16 µg Hg·L-1 was used to derived the 
guideline. In this static test, exposure to inorganic 
mercury (as HgCl2) for 72-h reduced the growth of a 
population of the coccolithophore algae, Emiliania 
huxleyi by 50%; 0.32 µg Hg·L-1 halted growth completely 
(Fisher et al. 1984). The LOAEL was divided by a safety 
factor of 10 to give an interim Canadian water quality 
guideline of 0.016 µg·L-1 or 16 ng Hg·L-1.  
 
Additional Considerations 
 
To attain the highest degree of environmental protection, all 
Canadian Environmental Quality Guidelines for mercury 
(water, sediment, tissue, and soil) should be applied 
concurrently. 
 
Toxicity of mercury is negatively correlated with salinity, 
selenium concentration, and oxygen content, and positively 
correlated with temperature (reviewed by Cuvin-Aralar and 
Furness 1991; Heit and Fingerman 1977; MacLeod and 
Pessah 1973; McKenney, Jr. and Costlow, Jr. 1981; Slooff 
et al. 1991; Snell et al. 1991). Water hardness has a 
negligible effect on mercury toxicity unlike other toxic 
metals such as copper or aluminium, where toxicity 
significantly decreases with increasing hardness (Keller and 
Zam 1991). 
 
The issue that faces many environmental managers is 
ensuring the protection of wildlife consumers of mercury-
ladened fish. Calculations using reference concentrations1 
of MeHg for wildlife species and field-based 
bioaccumulation factors (BAFs) produced estimates of 
water concentrations that could protect wildlife that 
consume aquatic biota. These generic calculations are 
intended as a guide to determining site- and species-specific 
water quality objectives. From conservative assumptions, 
concentrations of MeHg below 0.007 ng Hg·L-1 may be 
                                                           
1 A reference concentration is the concentration of MeHg in tissues of 
aquatic biota below which adverse effects are not expected for a given 
species of wildlife that consume aquatic biota (see Chapter 8).  
Reference concentrations for MeHg were derived for a suite of Canadian 
wildlife species; the lowest of which, that for Wilson’s storm petrel, 
Oceanites oceanicus (33 µg/kg diet ww), was selected as the Canadian 
Tissue Residue Guideline (Environment Canada 2002). 
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Figure 3. Select marine toxicity data for inorganic 
mercury. 
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required to protect all wildlife species in Canada while 
concentrations above 0.2 ng Hg·L-1 may pose a risk to 
wildlife species. MeHg concentrations in water between 
these limits may be hazardous to some wildlife depending 
on their feeding habits (preferred prey items, and the 
trophic level and BAFs of these prey items). More specific 
information is given in the supporting document for these 
guidelines (Environment Canada 2003). 
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